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We present a systematic approach to the calculation of finite-size (FS) effects for 
an O(n) field-theoretic model with both short-range (SR) and long-range (LR) 
exchange interactions. The LR exchange interaction decays at large distances 
as 1/r a+2-2~, ~t---~0 +. Renormalization group calculations in d = d , - e  are 
performed for a system with a fully finite (block) geometry under periodic 
boundary conditions. We calculate the FS shift of the critical temperature and 
the FS renormalized coupling constant of the model to one-loop order. The 
universal scaling variable is obtained and the FS scaling hypothesis is verified. 
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1. I N T R O D U C T I O N  

Finite-size scaling (FSS) theory for a system with long-range interactions 
decaying at large distances r as r d - ,  (d is the space dimensioality and 
0 < a ~ < 2  is a parameter) was first developed by Fisher and Privman. C1. 
Recently, this problem was considered in refs. 2-5. However, all the efforts 
in this direction have been concentrated on the mean spherical model, 
which is probably due to its relative simplicity and remarkable property to 
be exactly soluble. It is of considerable theoretical interest to understand 
how the FSS behaves in more realistic cases, for example, in a q~4-1attice 
model. 

The application of field-theoretic methods to the FSS theory has 
been initiated by Br6zin. t6) Br6zin and Zinn-Justin ~7~ and Rudnick et  aL ~8) 

showed how to study the size-dependent universal effects in an e-expansion 
in the neighborhood of the upper critical dimensionality d, = 4 for the 
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q94-field theory. The main idea in this approach is to represent the 
Hamiltonian as consisting of two parts: the k = 0 mode as an effective free 
part and the k :/: 0 modes as a perturbation to it. This requires the existence 
of a well-developed perturbation theory as an indispensable condition as in 
the case of the common bulk tp4-field theory. 

Recently it was pointed out by Honkonen and Nalimov tg) that the 
model with both SR and LR exchange may be treated by the renormaliza- 
tion group procedure in the minimal subtraction scheme. The LR inter- 
action in ref. 9 is of the special type tr = 2 - 2~, when ~ ~ 0 +. This permits 
one to treat the LR term as an interaction and to construct a diagrammatic 
expansion in ~. The results obtained in ref. 9 allow us to follow the ideol- 
ogy of refs. 7 and 8 and to present a systematic approach to the calculation 
of the FS effects for the O(n) field-theoretic model of this type. 

In Section 2 the model is defined and some results for the bulk system 
which we shall use in the following sections are summarized. In Sections 3 
and 4 the expressions for the renormalized constants of the model are 
derived up to one-loop order. The finite-size scaling hypothesis is analyzed 
in Section 5. 

2. MODEL 

We consider the following Landau Ginzburg Hamiltonian: 

~ = ~ o +  ~ (l~ 

where ~ -= - H / T ,  ka  = h = 1, 

~o = ~ k 2 - ~  + to tp~(k) ( la)  
i = 1  

is the free part of ~Y, and 

9rt~/-=- 4.1~. ~ E oPt(k,) ~P~(k2) ~~ (ks) r - k2 + ks) ( lb)  
l , j =  1 kl ,k2,k3 

is the C-interaction between fluctuations. 
The first and the second terms in Eq. ( la)  correspond to SR and 

LR exchange interactions, respectively. ~0i(k) is a scalar n-component field 
and t o = a ( T  - To), where To is the bare critical temperature for the bulk 
system. 

We suggest that tr = 2 - 2at with ~ ,~ 5, where e, = d, - d = 4 - 4~ - d 
(d, is the upper critical dimensionality). 
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A tractable diagrammatic expansion to all orders in perturbation 
theory has been constructed in ref. 9, where the LR term is regarded as an 
interaction, and dimensional regularization with minimal subtraction is 
used. 

Counterterms due to renormalization lead to the replacements (m) 

t ~ tZ,2 (2a) 

g ~ gZ1 (2b) 

b ~ bZ~ (2c) 

In Eqs. (2), t = a ( T - T , . ( ~ ) ) ,  where T , . ( ~ ) i s  the renormalized critical 
temperature of the bulk system, g is the renormalized coupling constant, 
and b is the renormalized exchange constant. Everywhere below we shall 
use dimensionless constants with length scale set to unity. 

In one-loop order we have 

( + )  1 (3a, Zq ,2~l+  ( _ b ) t ~  n 2 ( /+1)  +21~+4 ~ 
/ = 0  

= o ~; + 2& + 4~ 

and 

In Eqs. (3) 

(n+2"](l+2) 
gr~ '~ ~ ( - - b ) / g i \ - - ~ J ~  k l 

/ = 0 2t: + 2let + 8~ 

2real2 g [ - 2 ( C - l - l n 4 7 r ) + O 0 : 2 ) ]  

(3c) 

(4) 

Here C and F(.) are Euler's constant and the gamma function. Equations 
(3b) and (3c) have been obtained in ref. 9. We shall use also the following 
results obtained in ref. 9: 

(i) In the presence of LR exchange interaction the Wilson gamma 
functions 7~oL~ and 7~LR are given by the same functions as in the SR case, 
replacing only the argument ~ of the SR case by ~(1 +b)  -2. For example, 

~,,~,,(b, ~) = ~,,~.1-~(1 +b )  -~ ]  (5) 

(ii) The LR fixed-point equation for the effective parameter 
u = ~ ( l  + b )  -2 is 

y,s . (u*)  = ~ (6) 

822/62/3-4-4 
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For our purposes we shall use the one-loop order for the Wilson function 

n + 8  
7(1~ = u (7) 

~s, 6 

Because we shall work up to first order in e, it will suffice to replace Z,p by 
1 in Eq. (2c). 

. 

with 

and 

FINITE-SIZE SHIFT OF T c 

The finite-size shift of T,. is given by the following expression~7): 

t '= tn + tL (8) 

t g = tZ~2 (8a) 

(n~_.2) 1 ~o ~,  q2,,1 ~, 
tL= g--~ ,= (-b) ' (q2 + t), + , (Sb) 

q 

The term tn comes from the one-loop counterterm [see Eqs. (2a) and (3a)] 
and the term tc is the finite-size correction. The expression for tL is 
obtained using the diagrammatic technique developed in ref. 9. 

Equation (8) contains the result of ref. 7 (setting formally 1 = 0) for the 
SR case. 

The prime in the d-fold sum in Eq. (8) denotes that the term with a 
zero summation index has been omitted. In order to reduce the problem of 
evaluating the asymptotic behavior of the sum over q to the corresponding 
one-dimensional sum, we shall use the following identity: 

q2t(1 - ~) 1 ( ~ 

(q2+t)~+t-F(1 + I s )  Jo dxe-q2Xx t~ ~F1(1 +l ;  1 +l~; - t x )  (9) 

In Eq. (9), 1F~ is the degenerate hypergeometric function ~ (Kumer's 
function) defined as 

lFl(a; b; z) = (a)k z k 

k=O (b)k k! 

where ( a ) k = a ( a + l ) ' " ( a + k - - 1 )  and ( a )o= l .  
directly regarding the function 
original of q2t(, -~)/(q2 + t)~ + ~. 

(10) 

Identity (9) follows 
x t= ~FI(1 +l ;  1 +/at; - t x )  as a Laplace 
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Now, using the identity (9) for the finite-size term t L in the rhs of 
Eq. (8), we obtain 

tL = ( - b ) t  g (4n) a/2 F(1 + l) F(d/2) 
l = 0  

( n 6 2 )  1 L 2 - d ( L 2 )  z~' 
+ ~ ( - b y  g - -  F(1 + Is) 47z 2 \4re} 

1=0  

xJ" ~ dx Ad(x)--I  - x~'~F1 l + l ; l + l o q - - - ~ n 2 x  (11) 

where 

A(x)= ~ e -xm2 (12) 
m =  - - o r  

The first term in Eq. (11) is obtained replacing the function Aa/2(x) by its 
asymptotic expression ('a/x) a/2, using 

fc ~ t h ~ ~F~(a; c; - t )  d t -  F(b) F(c) F ( a - b )  
, F(a) F ( c -  b) 

and continuing analytically the obtained result for Re d > 2 + 2 l ~ .  From 
Eqs. (8a) and (3a), it follows that tR has an (t: + 2lc~ + 4~) ~ pole. This pole 
cancels the pole of the F-function in the first term in tz. 

Expanding all functions in tL near the upper critical dimensionality up 
to order eJ and ~z and after some algebra, for Eq. (8) we obtain the result 

( n + 2 ~  
7= L ( - h ) t  t~'\--i-j-- ] (l+ 1)[In t + C -  1 + 0 ( l + 2 ) ]  

l = 0  

+ ~ (-b)'g ~ ax A"(x)-~- 
1 = 0  

• IFI 1 +l;  l; -- -'4~n2X +O(g  =) (13) 

where 0( ' )  is the digamma function. 
The summation over l in Eq. (13) can be performed if we use the well- 

known integral representation 

fo I 1--x t+~ ~,(z+2)= - c +  i - x  ax 
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and the formula ~1) 

eZ[h/(l +b)] 

(-b) '  L~ = - -  ( 1 4 )  
/=o l + b  

where L~ e: ~F1(I + l;1; - z )  is the Laguerre polynomial. 
Finally, we obtain the following expression for the finite-size shift 

of T,.: 

7 
l + b  

t n + 2 t [ t ]  
1 + b+--i2- ui-  In 

-~-H~T) L 211 dx A 4 ( x ) - I  - 

xexp 4~ 21+bx +O(u~) (15) 

This equation generalizes the result of Br6zin and Zinn-Justin for the pure 
SR case, renormalizing the temperature by the rule t ~ t/(l +b). 

4. RENORMALlZATION OF THE COUPLING CONSTANT 

In a similar way, 

g=gR+gL (t6t 

where the one-loop counterterm is 

gR = gZ1 (16a) 

and the one-loop finite-size correction is: 

( n + 8 )  1 =~o q ~,  qZ,~ ~, gL=--g2 T -'~,_ (-b)'(l+l)(q2+t)'+2 (16b) 

The calculations here are analogous to those in the previous section, since 

~' qZm-,~ 1 O ~q, q2tll ,) 
q (q2+t)t+2 / + 1 ~  (qZ+t)t+* 

Taking first the sum over q and then differentiating the result over t, we 
find that 
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892(1 + b) 2 

= n + 8 u2 [ ln ( 1 - ~ b )  + 1] 
u +  12 l_ 

--U2(~)-~f~xdxIA4(X)--I--(~)21 
I L 2 t ] 

xexp - 41r 2 i +/~x +O(u2~) (17) 

From (17) it follows that the consideration of the LR term in Eq. ( la)  
effectively results in the replacement ~ ~ u = ~/(1 + b) 2 and t ~ t/(1 + b) in 
the corresponding formula of Br6zin and Zinn-Justin. tT~ 

5. F I N I T E - S I Z E  S C A L I N G  

Let us introduce the total spin per unit volume 

1 
f d'~x ~o(x) (18) ~ o = ~  v 

Then for the moments M2e= ((q92)P), where the average is taken at the 
tree level, we have 

M e  p = (2Ld)- p/2 f2p(tLa/2)~ 1/2) (19) 

w h e r e f 2 J . ) i s  a known function. ~7) 
The susceptibility ;t is proportional to M2, ~(~ LdM2. Then 

g(t, L) = La/2f(tLa/2) (20) 

Since the correlation length is ~--~t -v (where v =  1/a for d>du), the 
susceptibility may be written in the form 

Z(t, L) = t -  17(L(d - 2~)/2o- • L/i)  (21) 

From Eq. (21) one can see that above the upper critical dimensionality. 
d, = 4 -4~ t  the usual finite-size scaling does not hold. 

For testing the FSS hypothesis in the vicinity below d u let us consider 
the scaling variable z=TLd/2~ -1/2 [see also Eq. (19)] at the fixed point. 
This variable is very important in investigations of the FS effects in critical 
statics t7~ and critical dynamics, t12'~3) We have 
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"~ L a/2 f~ 1/2 
ZIf'P'='~-"b (8~) /2 f,P. 

~ m  

(u*) i/2{ 1 n - 4  
(8n)~/2 Y-~'Y-~ 4(n+8)e, yln y 

2(n +2 )  f :  
n + 8  ~ dx A 4 ( x ) -  1 - e v/4. 2 x 

(22) 

To obtain the above expression we used u* = 6e/(n + 8), v ~ = 2 - e(n + 2)/ 
(n+  8 ) - 2 ~ ,  and the fact that up to order e~ the terms proportional to 
ln L cancel. For convenience in Eq.(22) the characteristic variable 
y=[ t / ( l+b)]L  ~/" is introduced. The result (22) verifies the FSS 
hypothesis. 

The scaling variable z may be expressed as an analytic function of the 
variable y. For this purpose we shall use the expansion ~S'j2~ 

f( (/X A 4 ( X )  - 1 - -  e (V/4~'21~: 
} 

=ao+aly--Yin y+a2y2+O(9) (23) 

The first two coefficients in Eq. (23) are 

ao= I :  dx[A4(x)-  l -(~)21,,~ -1.77rt 

and 
1 

al = - ~ (1 + ~), ~ = const (see ref. ! 2) 

(24a) 

(24b) 

From Eq. (23) one obtains for the finite-size shift of T,. [see Eq. (15)] 
and for the scaling variable z [see Eq. (22)] the following expressions, 
respectively: 

( g n + 2  n + 2  g f f ~ l n  L)  + g n+2 
7 ~ t  l + ( l + b ) 2 ~ - a l  6 - ( 1  ( l + b )  2 3 

and 

L-  2a o 

(25) 

~ ( u * ) - ~ / 2  
zlr.p.~ (8n)l/~------T {Y+e[ao(n)+al(n)y+a2(n)Y 2+ " ' ]}  (26) 
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[ 2 ( n + 2 )  l ]  
a,(n) = l_ n + 8  al (27) 

Equation (26) gives us a systematic approach to obtaining the variable z 
in powers of y, when y ,~ 1. 

6. C O N C L U D I N G  R E M A R K S  

Comparing the derived equations (15) and (17) with the correspond- 
ing results for the pure SR case, (7~ one can see that the main difference 
consists in rescaling the temperature t [t--* t/(1 + b ) ]  and the constants g 
and b [ g  --* g/ ( l  + b)2; b --* hi. This is a consequence of the special type of 
LR interaction (c~ ,-~ e) in the bulk system. 

The crucial point in the approach proposed in ref. 7 is the cancellation 
of the pole originating in the one-loop counterterm with the pole of the 
finite-size correction term. The origin of the last is connected with the fact 
that the discrete sums over q in the field theory are extended to infinity 
(i.e., the zero lattice spacing is taken). It is known tgl that the pole of 
the counterterm for the SR case is removed from its value e-1 to the 
value ( e + 2 l ~ + 4 ~ )  -1, which corresponds to the LR interaction. We 
demonstrated that in the case under consideration this pole also cancels the 
pole of the finite-size term. 

The scaling variable z entering as an argument of the momenta M2,, 
in Eq. (19) is calculated at d < d ,  at the one-loop order. In our case, due 
to the obtained form of the rescaled variables t and g, one concludes that 
z is a universal quantity with respect to the presence of the LR interaction 
term [see Eq. (25)]. 

Our analysis shows that the renormalized values of the temperature 
and the coupling constant are continuous functions of the parameter 
when ~ --. 0. This holds for both cases of infinite and finite systems. In the 
latter case, the result was established to first order of the perturbation 
theory over g. 
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